Ice is water that is freezing into a solid state, typically forming at or below temperatures of 0 °Celsius, 32 °Fahrenheit, or 273.15 Kelvin. It occurs naturally on Earth, on other planets, in Oort cloud objects, and as interstellar ice. As a naturally occurring crystalline inorganic solid with an ordered structure, ice is considered to be a mineral. Depending on the presence of Impurity such as particles of soil or bubbles of air, it can appear transparent or a more or less opaque bluish-white color.
Virtually all of the ice on Earth is of a hexagonal crystalline structure denoted as ice Ih (spoken as "ice one h"). Depending on temperature and pressure, at least nineteen phases (Sphere packing) can exist. The most common phase transition to ice Ih occurs when liquid water is cooled below (, ) at standard atmospheric pressure. When water is cooled rapidly (quenching), up to three types of amorphous ice can form. Interstellar ice is overwhelmingly low-density amorphous ice (LDA), which likely makes LDA ice the most abundant type in the universe. When cooled slowly, correlated proton tunneling occurs below (, ) giving rise to macroscopic quantum phenomena.
Ice is abundant on the Earth's surface, particularly in the polar regions and above the snow line, where it can aggregate from snow to form glaciers and . As snowflakes and hail, ice is a common form of precipitation, and it may also be deposited directly by water vapor as frost. The transition from ice to water is melting and from ice directly to water vapor is sublimation. These processes plays a key role in Earth's water cycle and climate. In the recent decades, ice volume on Earth has been decreasing due to climate change. The largest declines have occurred in the Arctic and in the mountains located outside of the polar regions. The loss of grounded ice (as opposed to floating sea ice) is the primary contributor to sea level rise.
Humans have been using ice for various purposes for thousands of years. Some historic structures designed to hold ice to provide cooling are over 2,000 years old. Before the invention of refrigeration technology, the only way to safely store food without modifying it through was to use ice. Sufficiently solid surface ice makes accessible to land transport during winter, and dedicated may be maintained. Ice also plays a major role in .
An unusual property of water is that its solid form—ice frozen at atmospheric pressure—is approximately 8.3% less dense than its liquid form; this is equivalent to a volumetric expansion of 9%. The density of ice is 0.9167–0.9168 g/cm3 at 0 °C and standard atmospheric pressure (101,325 Pa), whereas water has a density of 0.9998–0.999863 g/cm3 at the same temperature and pressure. Liquid water is densest, essentially 1.00 g/cm3, at 4 °C and begins to lose its density as the water molecules begin to form the hexagonal of ice crystals as the freezing point is reached. This is due to hydrogen bonding dominating the intermolecular forces, which results in a packing of molecules less compact in the solid. The density of ice increases slightly with decreasing temperature and has a value of 0.9340 g/cm3 at −180 °C (93 K).
When water freezes, it increases in volume (about 9% for fresh water). The effect of expansion during freezing can be dramatic, and ice expansion is a basic cause of freeze-thaw weathering of rock in nature and damage to building foundations and roadways from frost heaving. It is also a common cause of the flooding of houses when water pipes burst due to the pressure of expanding water when it freezes.
Because ice is less dense than liquid water, it floats, and this prevents bottom-up freezing of the bodies of water. Instead, a sheltered environment for animal and plant life is formed beneath the floating ice, which protects the underside from short-term weather extremes such as wind chill. Sufficiently thin floating ice allows light to pass through, supporting the photosynthesis of bacterial and algal colonies. When sea water freezes, the ice is riddled with brine-filled channels which sustain Sympagic ecology such as bacteria, algae, and . In turn, they provide food for animals such as krill and specialized fish like the bald notothen, fed upon in turn by larger animals such as emperor penguins and minke whales. Sea Ice Ecology . Acecrc.sipex.aq. Retrieved 30 October 2011.
When ice melts, it absorbs as much Heat as it would take to heat an equivalent mass of water by . During the melting process, the temperature remains constant at . While melting, any energy added breaks the hydrogen bonds between ice (water) molecules. Energy becomes available to increase the thermal energy (temperature) only after enough hydrogen bonds are broken that the ice can be considered liquid water. The amount of energy consumed in breaking hydrogen bonds in the transition from ice to water is known as the heat of fusion.
As with water, ice absorbs light at the red end of the spectrum preferentially as the result of an overtone of an oxygen–hydrogen (O–H) bond stretch. Compared with water, this absorption is shifted toward slightly lower energies. Thus, ice appears blue, with a slightly greener tint than liquid water. Since absorption is cumulative, the color effect intensifies with increasing thickness or if internal reflections cause the light to take a longer path through the ice. Other colors can appear in the presence of light absorbing impurities, where the impurity is dictating the color rather than the ice itself. For instance, containing impurities (e.g., sediments, algae, air bubbles) can appear brown, grey or green.
Because ice in natural environments is usually close to its melting temperature, its hardness shows pronounced temperature variations. At its melting point, ice has a Mohs hardness of 2 or less, but the hardness increases to about 4 at a temperature of and to 6 at a temperature of , the vaporization point of solid carbon dioxide (dry ice).
Subjected to higher pressures and varying temperatures, ice can form in nineteen separate known crystalline phases at various densities, along with hypothetical proposed phases of ice that have not been observed. With care, at least fifteen of these phases (one of the known exceptions being ice X) can be recovered at ambient pressure and low temperature in metastable form. The types are differentiated by their crystalline structure, proton ordering, and density. There are also two metastable phases of ice under pressure, both fully hydrogen-disordered; these are Ice IV and Ice XII. Ice XII was discovered in 1996. In 2006, Ice XIII and Ice XIV were discovered. Ices XI, XIII, and XIV are hydrogen-ordered forms of ices I, V, and XII respectively. In 2009, ice XV was found at extremely high pressures and −143 °C. At even higher pressures, ice is predicted to become a metal; this has been variously estimated to occur at 1.55 TPa or 5.62 TPa.
As well as crystalline forms, solid water can exist in amorphous states as amorphous solid water (ASW) of varying densities. In outer space, hexagonal crystalline ice is present in the , but is extremely rare otherwise. Even icy moons like Ganymede are expected to mainly consist of other crystalline forms of ice. Water in the interstellar medium is dominated by amorphous ice, making it likely the most common form of water in the universe. Low-density ASW (LDA), also known as hyperquenched glassy water, may be responsible for noctilucent clouds on Earth and is usually formed by vapor deposition of water vapor in cold or vacuum conditions. High-density ASW (HDA) is formed by compression of ordinary ice I or LDA at GPa pressures. Very-high-density ASW (VHDA) is HDA slightly warmed to 160 K under 1–2 GPa pressures.
Ice from a theorized superionic water may possess two crystalline structures. At pressures in excess of such superionic ice would take on a body-centered cubic structure. However, at pressures in excess of the structure may shift to a more stable face-centered cubic lattice. It is speculated that superionic ice could compose the interior of ice giants such as Uranus and Neptune.
Subsequent research suggested that ice molecules at the interface cannot properly bond with the molecules of the mass of ice beneath (and thus are free to move like molecules of liquid water). These molecules remain in a semi-liquid state, providing lubrication regardless of pressure against the ice exerted by any object. However, the significance of this hypothesis is disputed by experiments showing a high coefficient of friction for ice using atomic force microscopy. Thus, the mechanism controlling the frictional properties of ice is still an active area of scientific study. A comprehensive theory of ice friction must take into account all of the aforementioned mechanisms to estimate friction coefficient of ice against various materials as a function of temperature and sliding speed. 2014 research suggests that frictional heating is the most important process under most typical conditions.
Sea ice forms in several stages. At first, small, millimeter-scale crystals accumulate on the water surface in what is known as frazil ice. As they become somewhat larger and more consistent in shape and cover, the water surface begins to look "oily" from above, so this stage is called grease ice. Then, ice continues to clump together, and solidify into flat cohesive pieces known as . Ice floes are the basic building blocks of sea ice cover, and their horizontal size (defined as half of their diameter) varies dramatically, with the smallest measured in centimeters and the largest in hundreds of kilometers. An area which is over 70% ice on its surface is said to be covered by pack ice.
Fully formed sea ice can be forced together by currents and winds to form pressure ridges up to tall. On the other hand, active wave activity can reduce sea ice to small, regularly shaped pieces, known as pancake ice. Sometimes, wind and wave activity "polishes" sea ice to perfectly spherical pieces known as ice eggs.
Other major ice formations on land include , , and . In particular, the Hindu Kush region is known as the Earth's "Third Pole" due to the large number of glaciers it contains. They cover an area of around , and have a combined volume of between 3,000-4,700 km3.
Permafrost refers to soil or underwater sediment which continuously remains below for two years or more. The ice within permafrost is divided into four categories: pore ice, vein ice (also known as ice wedges), buried surface ice and intrasedimental ice (from the freezing of underground waters). One example of ice formation in permafrost areas is aufeis - layered ice that forms in Arctic and subarctic stream valleys. Ice, frozen in the stream bed, blocks normal groundwater discharge, and causes the local water table to rise, resulting in water discharge on top of the frozen layer. This water then freezes, causing the water table to rise further and repeat the cycle. The result is a stratified ice deposit, often several meters thick. Snow line and are two related concepts, in that snow fields accumulate on top of and ablate away to the equilibrium point (the snow line) in an ice deposit.
are circular formations of ice floating on river water. They form within eddy currents, and their position results in asymmetric melting, which makes them continuously rotate at a low speed.
Shelf ice is formed when floating pieces of ice are driven by the wind piling up on the windward shore. This kind of ice may contain large air pockets under a thin surface layer, which makes it particularly hazardous to walk across it. Another dangerous form of rotten ice to traverse on foot is candle ice, which develops in columns perpendicular to the surface of a lake. Because it lacks a firm horizontal structure, a person who has fallen through has nothing to hold onto to pull themselves out.
Ice storm is a type of winter storm characterized by freezing rain, which produces a glaze ice of ice on surfaces, including roads and . In the United States, a quarter of winter weather events produce glaze ice, and utilities need to be prepared to minimize damages.
Sometimes, drops of water crystallize on cold objects as Rime ice instead of glaze. Soft rime has a density between a quarter and two thirds that of pure ice, due to a high proportion of trapped air, which also makes soft rime appear white. Hard rime is denser, more transparent, and more likely to appear on ships and aircraft. Cold wind specifically causes what is known as advection frost when it collides with objects. When it occurs on plants, it often causes damage to them. Various methods exist to protect agricultural crops from frost - from simply covering them to using wind machines. In recent decades, irrigation sprinklers have been calibrated to spray just enough water to preemptively create a layer of ice that would form slowly and so avoid a sudden temperature shock to the plant, and not be so thick as to cause damage with its weight.
The melting of ice entails the breaking of hydrogen bonds between the water molecules. The ordering of the molecules in the solid breaks down to a less ordered state and the solid melts to become a liquid. This is achieved by increasing the internal energy of the ice beyond the melting point. When ice melts it absorbs as much energy as would be required to heat an equivalent amount of water by 80 °C. While melting, the temperature of the ice surface remains constant at 0 °C. The rate of the melting process depends on the efficiency of the energy exchange process. An ice surface in fresh water melts solely by free convection with a rate that depends linearly on the water temperature, T∞, when T∞ is less than 3.98 °C, and superlinearly when T∞ is equal to or greater than 3.98 °C, with the rate being proportional to (T∞ − 3.98 °C) α, with α = for T∞ much greater than 8 °C, and α = for in between temperatures T∞.
In salty ambient conditions, dissolution rather than melting often causes the ablation of ice. For example, the temperature of the Arctic Ocean is generally below the melting point of ablating sea ice. The phase transition from solid to liquid is achieved by mixing salt and water molecules, similar to the dissolution of sugar in water, even though the water temperature is far below the melting point of the sugar. However, the dissolution rate is limited by salt concentration and is therefore slower than melting.
In the United States, the first cargo of ice was sent from New York City to Charleston, South Carolina, in 1799, and by the first half of the 19th century, ice harvesting had become a big business. Frederic Tudor, who became known as the "Ice King", worked on developing better insulation products for long distance shipments of ice, especially to the tropics; this became known as the ice trade.
Trieste sent ice to Egypt, Corfu, and Zante; Switzerland, to France; and Germany sometimes was supplied from lakes. From 1930s and up until 1994, the Hungarian Parliament building used ice harvested in the winter from Lake Balaton for air conditioning.
Ice houses were used to store ice formed in the winter, to make ice available all year long, and an early type of refrigerator known as an icebox was cooled using a block of ice placed inside it. Many cities had a regular ice delivery service during the summer. The advent of artificial refrigeration technology made the delivery of ice obsolete.
Ice is still harvested for ice and snow sculpture events. For example, a swing saw is used to get ice for the Harbin International Ice and Snow Sculpture Festival each year from the frozen surface of the Songhua River.
Ice is now produced on an industrial scale, for uses including food storage and processing, chemical manufacturing, concrete mixing and curing, and consumer or packaged ice.ASHRAE. "Ice Manufacture". 2006 ASHRAE Handbook: Refrigeration. Inch-Pound Edition. . Most commercial produce three basic types of fragmentary ice: flake, tubular and plate, using a variety of techniques. Large batch ice makers can produce up to 75 tons of ice per day.Rydzewski, A.J. "Mechanical Refrigeration: Ice Making." Marks' Standard Handbook for Mechanical Engineers. 11th ed. McGraw Hill: New York. pp. 19–24. . In 2002, there were 426 commercial ice-making companies in the United States, with a combined value of shipments of $595,487,000.U.S. Census Bureau. "Ice manufacturing: 2002." 2002 Economic Census. Home refrigerators can also make ice with a built in icemaker, which will typically make or crushed ice. The first such device was presented in 1965 by Frigidaire.
Whenever there is freezing rain or snow which occurs at a temperature near the melting point, it is common for ice to build up on the of vehicles. Often, snow melts, re-freezes, and forms a fragmented layer of ice which effectively "glues" snow to the window. In this case, the frozen mass is commonly removed with . A thin layer of ice crystals can also form on the inside surface of car windows during sufficiently cold weather. In the 1970s and 1980s, some vehicles such as Ford Thunderbird could be upgraded with heated windshields as the result. This technology fell out of style as it was too expensive and prone to damage, but rear-window are cheaper to maintain and so are more widespread.
In sufficiently cold places, the layers of ice on water surfaces can get thick enough for to be built. Some regulations specify that the minimum safe thickness is for a person, for a snowmobile and for an automobile lighter than 5 tonnes. For , effective thickness varies with load - i.e. a vehicle with 9-ton total weight requires a thickness of . Notably, the speed limit for a vehicle moving at a road which meets its minimum safe thickness is 25 km/h (15 mph), going up to 35 km/h (25 mph) if the road's thickness is 2 or more times larger than the minimum safe value. There is a known instance where a railroad has been built on ice.
The most famous ice road had been the Road of Life across Lake Ladoga. It operated in the winters of 1941–1942 and 1942–1943, when it was the only land route available to the Soviet Union to relieve the Siege of Leningrad by the German Army Group North. The trucks moved hundreds of thousands tonnes of supplies into the city, and hundreds of thousands of civilians were evacuated. It is now a World Heritage Site.
For near the poles, being ice-free, ideally all year long, is an important advantage. Examples are Murmansk (Russia), Petsamo (Russia, formerly Finland), and Vardø (Norway). Harbors which are not ice-free are opened up using specialized vessels, called icebreakers. Icebreakers are also used to open routes through the sea ice for other vessels, as the only alternative is to find the openings called "" or "leads". A widespread production of icebreakers began during the 19th century. Earlier designs simply had reinforced bows in a spoon-like or diagonal shape to effectively crush the ice. Later designs attached a forward propeller underneath the protruding bow, as the typical rear propellers were incapable of effectively steering the ship through the ice
One vulnerability effected by icing that is associated with reciprocating internal combustion engines is the carburetor. As air is sucked through the carburetor into the engine, the local air pressure is lowered, which causes adiabatic cooling. Thus, in humid near-freezing conditions, the carburetor will be colder, and tend to ice up. This will block the supply of air to the engine, and cause it to fail. Between 1969 and 1975, 468 such instances were recorded, causing 75 aircraft losses, 44 fatalities and 202 serious injuries. Thus, Carburetor heat were developed. Further, reciprocating engines with fuel injection do not require carburetors in the first place.
Jet engines do not experience carb icing, but they can be affected by the moisture inherently present in jet fuel freezing and forming ice crystals, which can potentially clog up fuel intake to the engine. Fuel heaters and/or de-icing additives are used to address the issue.
Small boat-like craft can be mounted on blades and be driven across the ice by sails. This sport is known as ice yachting, and it had been practiced for centuries. Another vehicular sport is ice racing, where drivers must speed on lake ice, while also controlling the skid of their vehicle (similar in some ways to dirt track racing). The sport has even been modified for .
Other than the sea ice (which already displaces water due to Archimedes' principle), these losses are a major cause of sea level rise (SLR) and they are expected to intensify in the future. In particular, the melting of the West Antarctic ice sheet may accelerate substantially as the floating ice shelf are lost and can no longer buttress the glaciers. This would trigger poorly understood marine ice sheet instability processes, which could then increase the SLR expected for the end of the century (between and , depending on future warming), by tens of centimeters more.
Ice loss in Greenland and Antarctica also produces large quantities of fresh meltwater, which disrupts the Atlantic meridional overturning circulation (AMOC) and the Southern Ocean overturning circulation, respectively. These two halves of the thermohaline circulation are very important for the global climate. A continuation of high meltwater flows may cause a severe disruption (up to a point of a "collapse") of either circulation, or even both of them. Either event would be considered an example of tipping points in the climate system, because it would be extremely difficult to reverse. AMOC is generally not expected to collapse during the 21st century, while there is only limited knowledge about the Southern Ocean circulation.
Another example of ice-related tipping point is permafrost thaw. While the organic content in the permafrost causes and methane emissions once it thaws and begins to decompose, ice melting liqufies the ground, causing anything built above the former permafrost to collapse. By 2050, the economic damages from such infrastructure loss are expected to cost tens of billions of dollars.
Global losses of sea ice between 1992 and 2018, almost all of them in the Arctic, have already had the same impact as 10% of greenhouse gas emissions over the same period. If all the Arctic sea ice was gone every year between June and September (polar day, when the Sun is constantly shining), temperatures in the Arctic would increase by over , while the global temperatures would increase by around .
By 2100, at least a quarter of mountain glaciers outside of Greenland and Antarctica would melt, and effectively all ice caps on non-polar mountains are likely to be lost around 200 years after global warming reaches . The West Antarctic ice sheet is highly vulnerable and will likely disappear even if the warming does not progress further, although it could take around 2,000 years before its loss is complete. The Greenland ice sheet will most likely be lost with the sustained warming between and , although its total loss requires around 10,000 years. Finally, the East Antarctic ice sheet will take at least 10,000 years to melt entirely, which requires a warming of between and .
If all the ice on Earth melted, it would result in about of sea level rise, with some coming from East Antarctica. Due to isostatic rebound, the ice-free land would eventually become higher in Greenland and in Antarctica, on average. Areas in the center of each landmass would become up to and higher, respectively. The impact on global temperatures from losing West Antartica, mountain glaciers and the Greenland ice sheet is estimated at , and , respectively, while the lack of the East Antarctic ice sheet would increase the temperatures by .
A "magnetic analogue" of ice is also realized in some insulating magnetic materials in which the magnetic moments mimic the position of protons in water ice and obey energetic constraints similar to the Bernal-Fowler ice rules arising from the geometrical frustration of the proton configuration in water ice. These materials are called spin ice.
Phases
Friction properties
Natural formation
In the oceans
On land
On rivers and streams
On lakes
As precipitation
Snow and freezing rain
Hard forms
On surfaces
Ablation
Role in human activities
Cooling
Harvesting
Artificial production
Land travel
Water-borne travel
Air travel
Recreation and sports
Other uses
As thermal ballast
As structural material
Impacts of climate change
Historical
Predictions
Non-water
See also
Further reading
External links
|
|